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System Resistance vs System Resilience

e System resistance is the ability to prevent system from

Two complementary structural or functional failures.
concepts when |

designing/retrofitting | * System resilience is the ability to withstand (i.e. absorb and
system bounce back from) shocks and pressures, whether economic,
climatic or demographic in nature.
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Resilience as a KPI of Sustainability criteria in water system

Resilience
definition

L <

—

* how quickly a system can be recovered from a failure/unsatisfactory to
normal/satisfactory state (Hashimoto et al. 1982)

resilience is to minimise the level of service failure magnitude and

duration (Butler et al. 2017)

» Due to different interpretations of resilience, it should be defined as a multi-component
indicator in water systems for both water supply and wastewater/stormwater systems
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Methodology

* Aim: developing new multi-component resilience indicators for Integrated UWS to
evaluate intervention strategies for both water shortage and flood resilience

* Resilience indicators are estimated by using a conceptual urban water metabolism model.

* Intervention strategies are water recycling schemes (i.e. RWH and GWR) that have
concurrent impact on all water supply, stormwater and wastewater subsystems.
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Multi-component resilience indicators in water system
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Multi-component resilience indicators in UWS

_Name | Water supply system

1 Max T, = the longest failure 1 Max T¢ = the longest failure
duration i.e. time period that water duration i.e. time period that runoff

@

Min recovery

Max T . . Max T .
I rate P F demand is not fully delivered P IF exceeds sewer capacity
1 . : 1 . .
rec:\:l:rrafaete — Ave (T;)= average failure duration @ ——__  Ave (T;)= average failure duration
y ve(Tr)  over the planning horizon Ave(Tr) over the planning horizon
D; =S, M (Ri _ Ci) x 100
Max Severity Max( D; ) x 100 S, = water supply and “*\ ¢, R=runoff generated and
D, = water demand at time step i C;= conveyance capacity at time step |
D; = §; R. — C.
A X 100 .. -
s‘:x::;ge ve( D; ) Average water deficit over Ave( C; ) X100 Average excess runoff over
y the planning horizon is calculated. the planning horizon is calculated.
Max (D = S) Z(Ri - Ci)
M 100 . _— .
volumetric ax( D, ) * The largest consecutive Max( > C ) *100 The Jargest consecutive
severity water deficit is calculated. excess runoff is calculated.
Average Ave <Z(Di D_ Si)) %X 100 Ave (Z(Ri _ Ci)) x 100
volumetric 2D, Average consecutive water LG Average consecutive excess
severity deficit over the planning horizon is calculated. runoff over the planning horizon is calculated.
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Urban Metabolism Concept

* Long-term Performance of integrated Urban Water System (UWS) is assessed by Urban
Water Metabolism concept

* BAU and any intervention strategies are evaluated by using the WaterMet? model
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WaterMet? model Interfac
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TRANSITIONS TO THE URBAN
WATER SERVICES OF TOMORROW
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Results
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Water recycling schemes

 Two water reuse schemes are analysed:
1. rainwater harvesting (RWH)

Industrial =
water demand

2. grey water recycling (GWR)

toilet and kitchen to sewer

Lacal A ’k\f Local Area GWR scheme
RwH Tank® % Local Area RWH scheme

\,
.

« Performance of two individual intervention strategies including RWH and GWR
schemes with different capacities are compared with business as usual (BAU) state
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Case study (Oslo, Norway)

Single subcatchment with two associated local areas
with/without water recycling scheme

Simulation: daily time step with a duration of 30
years planning horizon

320,000 household properties.
Household RWH full tank capacity: 3 m3
Annual average rainfall depth: 803 mm
Indoor water demand: 180 L/day/capita
Total area of surfaces: 8,450 ha

Proportion of roof, pavement and roads

surface areas: 16%
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Existing water supply conduit/
trunk main/distribution main

...... £> Existing overflow/discharge

into receiving water
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Assumptions for RWH and GWR schemes

* Single representative RWH/GWR tank with 50% of household adoption rate in four
capacities.

 RWH collects runoff from roofs, roads and pavements and to supply water for toilet
flushing and garden watering (irrigation) and industrial usages.

* GWR collects greywater from hand basin, dishwasher, shower, washing machine and
treated greywater is used for toilet flushing, garden watering and industrial uses.

Percentage of conventional
design capacity

10% of full capacity 0.048 MCM 9,750 m3
25% of full capacity 0.12 MCM 19,500 m3
50% of full capacity 0.24 MCM 39,000 m?3

100% of full capacity 0.48 MCM 78,000 m3
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Results: Recovery rate resilience indicators

Strategies:

1- BAU
2-RWH(0.048MCM)
3-RWH(0.12MCM)
4-RWH(0.24MCM)
5-RWH(0.48MCM)
6-GWR(0.00975MCM)
7-GWR(0.0195MCM)
8-GWR(0.039MCM)
9-GWR(0.078MCM)
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Results: Severity-related resilience indicators (%)

Strategies:

1- BAU
2-RWH(0.048MCM)
3-RWH(0.12MCM)
4-RWH(0.24MCM)
5-RWH(0.48MCM)
6-GWR(0.00975MCM)
7-GWR(0.0195MCM)
8-GWR(0.039MCM)
9-GWR(0.078MCM)
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Results: Severity-related resilience indicators (%)

Strategies:

1- BAU
2-RWH(0.048MCM)
3-RWH(0.12MCM)
4-RWH(0.24MCM)
5-RWH(0.48MCM)
6-GWR(0.00975MCM)
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Variations of runoff generated/conveyance capacity of sewer system
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Variations of water demand and supply in three strategies

<
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Conclusions

* Metabolism based approach (WaterMet? ) can be very useful tool for analysis of multi-
component resilience in urban water systems for long-term planning horizon.

* Results show there is no single best intervention solution that can reduce both failure
duration and magnitude in water supply and sewer systems.

* Performance of intervention strategies for different severity-based resilience indicators
seems to be relatively similar.

* Other assessment criteria (e.g. economic and environmental) should also be included
when selecting new intervention strategies.

* For generalisation of the findings outlined here, further applications to other case

studies are required.
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