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mrgeromey  Water-Energy Nexus in Urban Water Systems

o= Water for energy exploration and extraction: All fossil energy
P sources require water for exploration and extraction including

-

- =y well drifing, hydraulic fracturing, and mining operations,
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Energy for collectng, treating
and disposing of wastewater

cultivation of biomass fueis pressunizing water for use \.g calculated for primary water supply sources
in drip rigation systems x in the Regional Reports, volume 2. > .!

Key:
O Uses energy 1o focilitate water use O Uses water in the process of energy generaton
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e

Reducing water availability for drinking extends water
conveyance systems which need more energy.

-In California, two-thirds of population receives water
that can travel thousands of miles to supply water.

-Advanced energy intensive treatment processes are
Increasingly needed to treat source waters

-New water-saving technologies are energy intensive
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Key questions of water-energy-pollutant nexus in Urban Water Systems

Is there any nexus between water-energy-pollutant in Urban Water Systems?
How much can this nexus affect indicators in Urban Water Systems?

What is impact of external drivers (climate change, pop. growth) on this nexus?

sy Intakes and transfers (inflows)
wemmmmwwwp Discharge and transfers (outflows)

‘ s Leakage (losses)
.»A Ev:i.mhm ++seesesp Natural water outflows

What is the best Strategies to improve long-

term performance of this nexus?
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 Develop an integrated assessment framework based on the water-
energy-pollutant nexus and the urban water metabolism

 Explore the potentials of a water reuse strategies to improve the
nexus approach in an integrated UWS.

« Evaluate the performance of centralised and decentralised water
reuse using this framework.
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Urban Water
Metabolism
modelling
Case study selection ' 1 Performance indicators
: Configurations
- End use ) E;E:Fell;_?avings
- Adoption rate i Eﬁé?g; I«t:»!t:'usumprti«:m
- Treatment technol }
Model set-up - Total energy mnsﬁh;}tinn - % of renewable inputs
UWS and local areas | - Net eutrophication
l l - Removal efficiency
Selection l,

(support with local experts)

[ Data collection ]

[ Sensitivity analysis ]

l |
I l
¥
Simulations (WM2 tool)
Calbration and Water, Energy, Comparisons and
Verification pollutants and future directions
cost balance
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Methodology: WaterMet?
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Key
Nexus | performance Definition Formula
Indicator
Reliability =~ Capacity to supply R= WS/Zd
(0-1) demand
WWELEES Water savings  Reduction of water oaWs=TE 1100
(%) extracted in reference
to the BAU
Consumption Energy inputs per m3 Net energy balance
SO Whim?)
Eutrophicatio Caused by C, N and P Net eutrophication balance
n, (kgPO,/m3) loads in the systems
Pollutants
Removal Removal of BOD e - /e fimes —Rulion imass (6 Fuent + 20 = sl 100
efficiency (%) mass flow |

Pi=Pollutant 1
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Methodology: Case study
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« Semi-arid region

« Water reuse in practice for urban irrigation and construction
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Urban Water system in Rincon Cities

Sub-system Main parameters San Francisco Purisima
Water supply Total groundwater wells 12 10
Water supply (Mm3/y) 6.1 3.4
Chlorination Cl, NaOCl
Leakages (%) 40 53
Demands Inhabitants 71,139 43,512
Households 15,523 9,228
Sewer Sewer capacity (m3/y) 41,900 31,600
Wastewater Activated sludge plant capacity (m3/d) 21,600
Treatment
Reuse Reuse rate 1%
Energy recovery (kWh/m3) 0.3
Discharge Receiving water body Turbio River
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Adoption S _
rate trategies
Water source End use Technol .
s N ey - Decentralised:
S1-S8
Urban Sand Centralised:
Irrigation =1 2 filter S9-S12
s3 S4 RBC Adoption rate:
Grey water Proportion of demand users
- - TR applying reuse strategies
Toilet flushing
e g7 S8 Constructed Energy Inputs:
wetland Greywater treatment
Distribution
S9 S10 Chemicals
Reclaimed Activated sludge
water _ from BAU
Industrial S11 512

Irrigation
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s

Strategy Reliability « The system can supply the demand in 30
BAU 0.997 years under current stressed conditions:
>1 0.997 . 120-145 Liters per capita
52 0.997 (250 Lpc recommended; CONAGUA, 2007)
53,55, S7 0.998 Irrigation <5L/m2d
>4, 56, 58 1.000 « Motivations for water reuse are related to
3 0.998 other benefits (groundwater preservation,
S10 1.000 Costs, etc).
511 0.997
512 0.999
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LRSSt Total savings per strategy

10%Adoption rate I 3 water[F ¥l Energy Bl Eutroph Bl BOD rem 50% Adoption rate
10 10
| Irrigation Toilet + irrig Industry |Irrigation Toilet + irrig Industry
8 8 -
6 6 -
4 4+
& 0 __J_luh_ & 0 e
c =
% 2 £
0 2 »n 2
-4 - 2 -
6 - -6 -
8 8 -
-10 -10
s1 s3 s5 s7 s9 S11 s2 s4 s6 s8 $10 s12
GW RW GW RW

« Water savings depends to the adoption rate and end-use.

— 83, S5, S7, S9 save 2% of freshwater when 10% of households in toilet flushing
— $4, 56,58, S10 up to 8% adopted in 50% households for toilet flushing.
— $1,S2 save <0.5% when adopted in 10% households for urban irrigation

» Centralised reuse: Increases eutrophication and reduces overall BOD removal

. . : _ 15
* Reuse strategies consume more energy, especially in systems with 50% adoption rate.
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0.78 7 T. BAU 10% Adoption rate 0.78 ] _A BAU 10% Adoption rate
. Water reuse affects energy 076 .5 075 v st
consumption due to 074 - o
additional treatment and EY "
distribution g "7
) 2068+ 0.68
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* S6>S4>S10>S8; for 050- . . . . . . 050- . . . . . .
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. 0.68 H 0.68
energy consumption B0 - .
5 066 . 0.66 - [
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Greywater recycling Reclaimed water



Comparison of eutrophication
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gPO

4eq

Eutrophication caused and
avoided for C, N, P.

*GW strategies reduced

*GW-50% (S4, S6,S8) reduce 3
/m3y and centralised
water reuse, i.e. RW-50% (S10,
S12), will increase 10

gPO /M3y by 2040.
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2400 S10: 50%- centralised-Industrial
S8: 50%-for toilet/irrigation
2000 r047.3 19763 Sewage iow reduces BOD removal efficiency,
L I Treated while S8 (Decentralised) improves
I Untreated e
B Reuse the efficiency

—
(o)}
o
o

Main reasons:

- Increase inflow into sewerage in
S10 compared to BAU would
increase BOD mass flow

- Increase removal efficiency in S8

BOD Load (Tonl/y)
o
3

(0]
o
o

400 due to an external wetland will
_ 0 1.06 == reduces BOD concentration.
0 _m - In S8 less concentration and less
BAU S8 $10 sewer flow will reduce BOD mass
flow.

Total flows (m3)

Subsystem Component BAU S8 S10

1g [ewerese  sentarysewageinflow q343937460 149,396,388.70  164,529,228.26
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* There is strong connection between water-energy-Pollutant in urban water systems.

* Various centralised and decentralised water reuse strategies can be analysed in this

framework.

e Analysis of water-energy-pollutant nexus was conducted by using Metabolism based

approach (WaterMet?).

* Long-term performance of water reuse schemes can be used effectively for strategies

assessment and improvement of water-energy nexus in an integrated UWS

* Decentralised water reuse strategies can reduce eutrophication and increase BOD

removal.

19
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