

MICROTURBINES FOR USE IN WATER NETWORKS

SALDANHA, JOSÉ SAINT GOBAIN PAM PORTUGAL TECHNICAL DIRECTOR

JOSE.SALDANHA@SAINT-GOBAIN.COM

Water Efficiency Conference 5-7 September 2018 University of Aveiro, Portugal

MICROTURBINES FOR USE IN WATER NETWORKS - KEY POINTS

The 3 pillars of MICRO-TURBINE PAM

RENEWABLE ENERGY

SUSTAINABLE **DEVELOPMENT**

Recover energy dissipated by water and generate electricity **INOVATION**

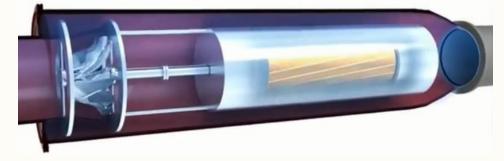
AXIAL SOLUTION

The only turbine with axial axis in the direction of the fluid

ECONOMY

RETURN ON INVESTMENT

Competitive solution High efficiency Service Life: 25 years Eligible for applications in **European funds**

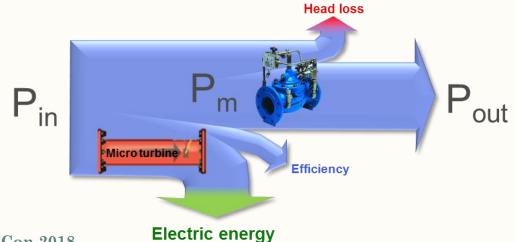


MICROTURBINES FOR USE IN WATER NETWORKS - KEY POINTS

An innovative solution to produce electrical energy whether for self consumption or to sell, by the use of over Head available in water/irrigation supply systems

- It's a green production of electricity, renewable and environment-friendly
- It offers reasonable "pay-back" in view of needed investment (purchase and installation costs are not high)
- Availability of energy in remote locations
- Low maintenance and estimated service life of 25 years

MICROTURBINES FOR USE IN WATER NETWORKS - TARGET AND PRINCIPLE

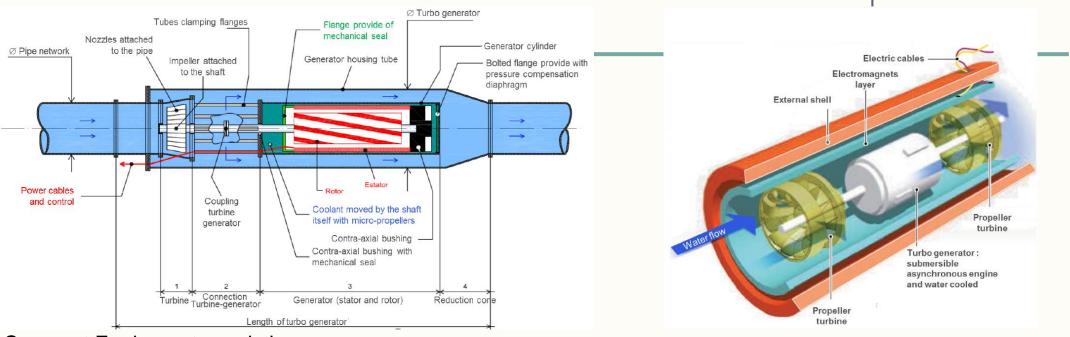


CURRENT NETWORK WITH AN AUTOMATIC CONTROL VALVE

Head loss (Pin – Pout) by cavitation Reduces service life of the automatic control valve

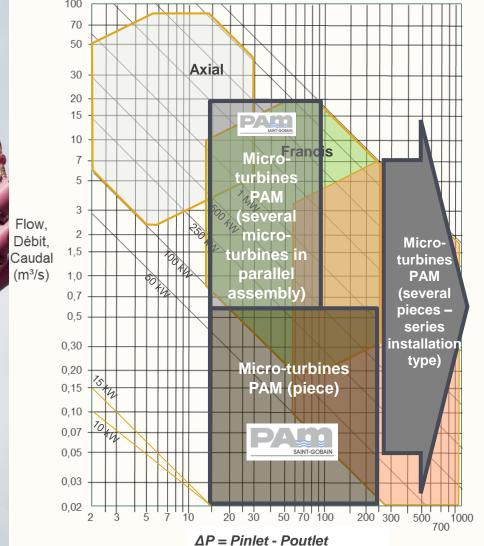
MICRO-TURBINE INSTALLED IN PARALLEL WITH THE AUTOMATIC CONTROL VALVE

Reducing Head loss = (P_{in} – Pout) = increase service life of the ACV


Electric energy recovery trough micro-turbine

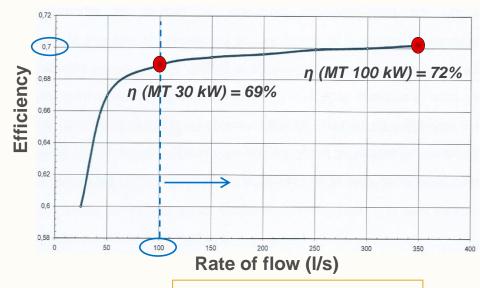
#WATEFCon 2018

MICROTURBINES FOR USE IN WATER NETWORKS - HOW DOES IT WORK?


Compact Equipment consisting:

- Turbine (single stage or multi-stage), one or several diffusers and rotors (1000, 1500 or 2000 rpm)
- One three-phase asynchronous generator (voltage: 400, 690,1000 or 3300 volts)
- All inserted in a metallic carbon steel flanged pipe (ext.shell), red color epoxy lined and coated (drinking water approval)
- Nominal Sizes: DN 50 DN 600
- Nominal flow rates: 5 l/s up to 600 l/s
- Power: 0,2 kW/piece (DN 50) 350 kW/piece (DN 600)

MICROTURBINES FOR USE IN WATER NETWORKS RANGE/FIELD OF APPLICATION



For flow rates > 100 l/s, Efficiency > 69 %

Applications:

- Drinking
 Water (ACS
 Approval)
- Irrigation
- Raw Water
- Sea water (tests undergoing)

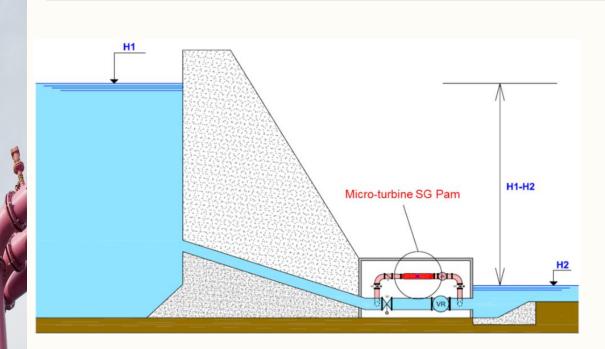
Micro-turbines of 30 up to 100 kW Conditions: Head = 40-45 mWh

 $P = g \times Q \times H_n \times \eta$

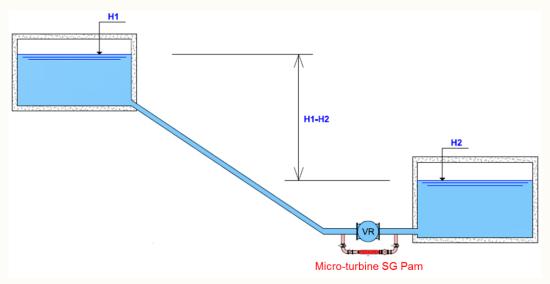
P: available power (kW)

g: acceleration of gravity (9,81 m/s²)

Q: water flow (m^3/s)

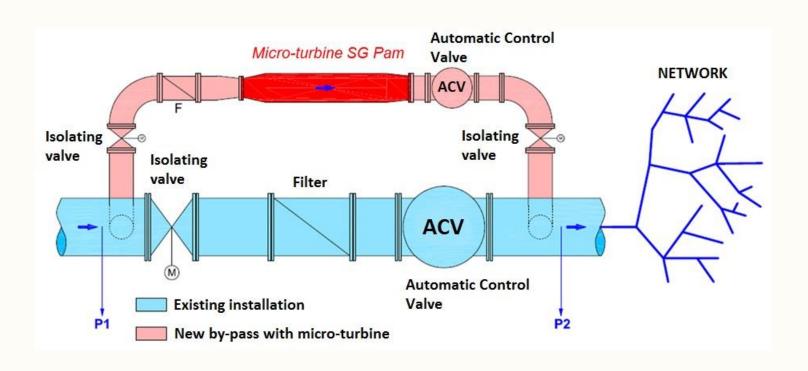

 H_n : Falling heigth, Head (m)

η : Eficciency



MICROTURBINES FOR USE IN WATER NETWORKS – USUAL FACILITIES TYPE

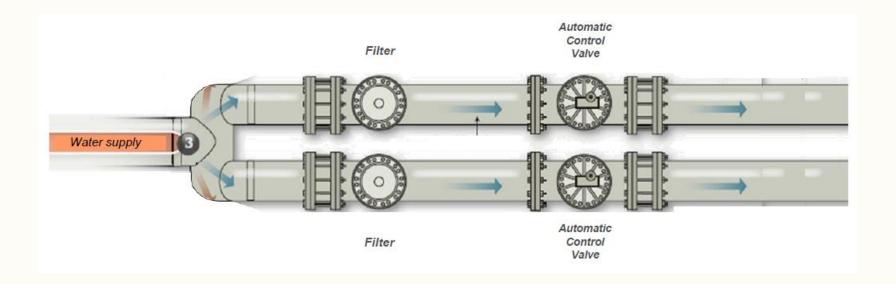
Ecological compulsory flows in Dams: in the chamber of the flow regulating valve


For water supply facilities such as:

- Reservoirs
- Water Treatment Plants
- Automatic Control Valves Chambers
- Irrigation Networks

MICROTURBINES FOR USE IN WATER NETWORKS USUAL FACILITIES TYPE

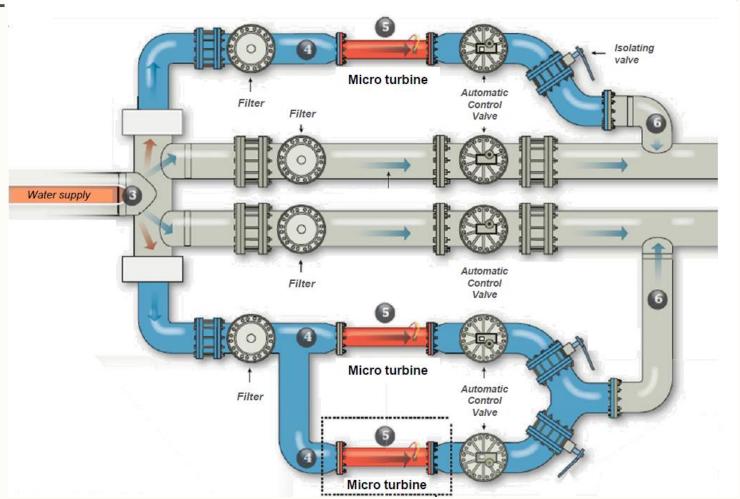
Easy and common assembly: in parallel with the already applied pressure reducing valves



MICROTURBINES FOR USE IN WATER NETWORKS

<u>Before</u>

Water Supply main for 2 reservoirs



MICROTURBINES FOR USE IN WATER NETWORKS

<u>After</u>

MICROTURBINES FOR USE IN WATER NETWORKS FINANTIAL ESTIMATION

Data:

- kWh selling price = 0,06 EURO/kWh
- Eficiency = 70 %
- Working time = 7000 hours
- Costs of amortization 15 years (6,6 %): not included/subsidies: not included

POWER	Investment			Maintenance	ENERGY RECOVERY		EBDITA	PAY BACK
(kW)	Purchasing MT + ECP*	Installation	Total	Costs	(per year) Year 1			
	(EURO)	(EURO)	(EURO)	(EURO/year)	(kWh)	(EURO)	(EURO)	Years
10	35.250	9.200	44.450	1.334	70.000	4.200	2.867	15,5
20	64.762			2.495	140.000		5.905	,
50	161.625		207.625	4.153	350.000	21.000	16.848	,
75	249.300		301.300	6.026	525.000		25.474	
100	318.450		376.950	7.539	700.000	42.000	34.461	10,9
200	580.000	60.000	640.000	12.800	1.400.000	84.000	71.200	9,0
300	825.000	61.875	886.875	17.738	2.100.000	126.000	108.263	8,2

(*) - Set Micro-Turbine + Electrical control panels (valves and other fittings not included) EBDITA: Earnings before depreciation, interests, taxes and amortization

THANK YOU

SALDANHA, JOSÉ
TECHNICAL DIRECTOR, SAINT GOBAIN PAM PORTUGAL
JOSE.SALDANHA@SAINT-GOBAIN.COM

