WATEF 2018 - Aveiro (Portugal)

Development of a noise-sensing device for water end-uses monitoring

Roldán J.C., Cobacho R., Arregui F., Tormos A., Guill A.

CONTENTS

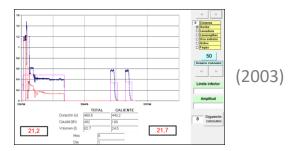
- 1. Introduction
- 2. Development plan
- 3. The prototype
- 4. Operation
- 5. Results
- 6. Conclusions
- 7. Future aims

Urban water efficiency has been our research area for nearly 20 years

We have worked on:

- Hydraulic modelling
- Water losses management
- Meter management
- Demand characterization and management

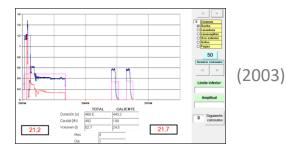
Urban water efficiency has been our research area for nearly 20 years


We have worked on:

- Hydraulic modelling
- Water losses management
- Meter management
- Demand characterization and management

Complementary approaches to learn how water is consumed at home

- Water diaries fulfilled by End-uses monitoring: consumers
- Surveys on consumers' habits
- Audits in households
- Pilot studies



Complementary approaches to learn how water is consumed at home

Why don't we learn which is the water device being used by listening to it?

End-uses monitoring:

DEVELOPMENT PLAN

Device requirements

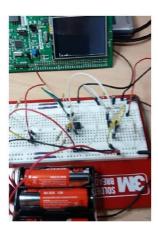
- Easy attachment to (i) inlet water hoses or (ii) water appliances
- Registration of water noise during water consumption
- Filtering of other noises (environment, people)
- Storage of basic noise information as registered
- Basic signal analysis

DEVELOPMENT PLAN

A short joint project was devised

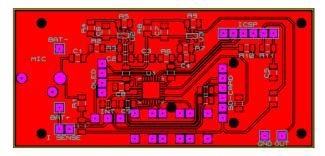
Hydraulic Engineering Dpt. + 1 Final student's degree Project funded by the Spanish Ministry

Sketch of the device components



DEVELOPMENT PLAN

Stages planned


#	Stage	Time
1	Requirements and basic design	July 2017
2	Performance simulation	Sept. 2017
3	First prototype construction	Oct. 2017
4	Preliminary tests	Nov. 2017
5	Definitive prototype construction	Jan. 2018
6	Full performance tests	Feb. 2018
7	Future developments	June 2018

- Theoretical design
- Tests on Proteus software
- Tests on bench

First assembling

Key trials and decisions

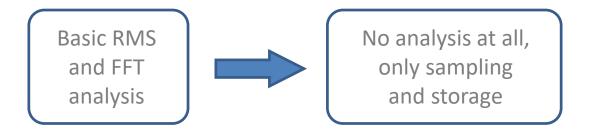
Key trials and decisions

• Selection of the sensor type:

Microphone

Piezometer

Accelerometer


Key trials and decisions

- Selection of the sensor element.
- Selection of the point for sensor installation.

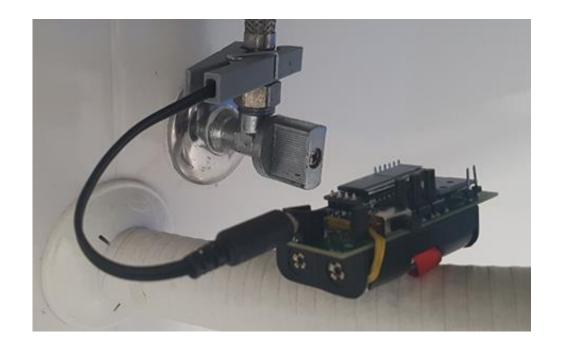
Key trials and decisions

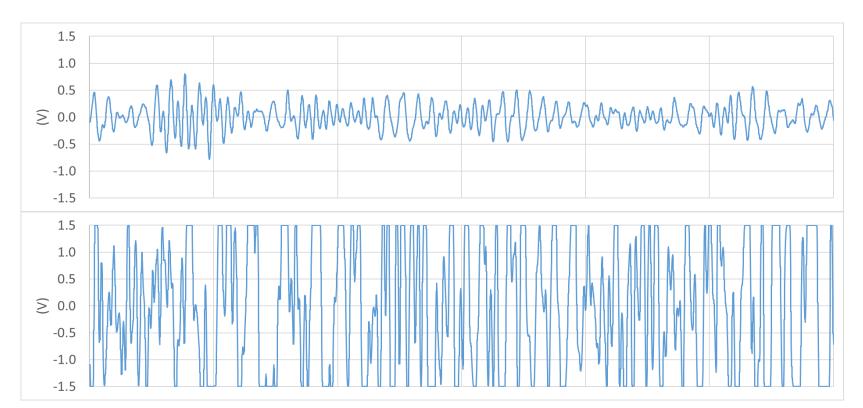
- Selection of the sensor element.
- Selection of the point for sensor installation.
- Degree of signal process performed by the microcontroller:

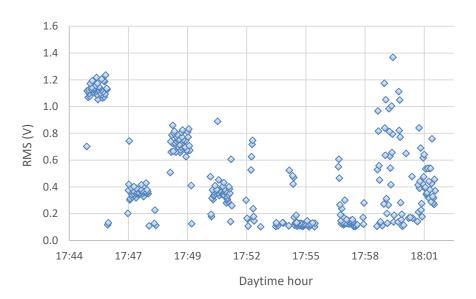
Main (initial) features

Sampling rate: 120 kHz

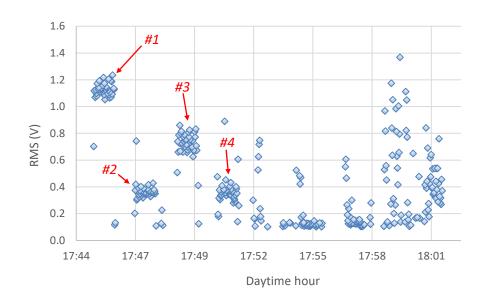
Bandwidth: 60 kHz


- Raw sampled information stored with no processing
- Noise threshold setting
- Battery life: < 2 months

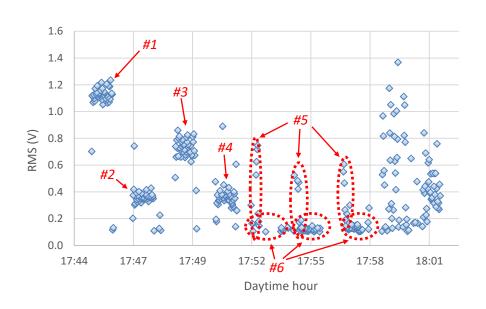

OPERATION

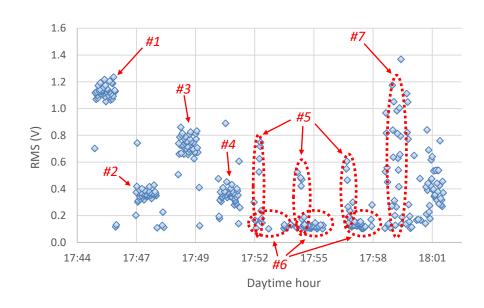

Sensing procedure

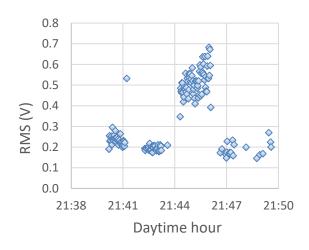
- Installation
- Threshold setting
- and listen...



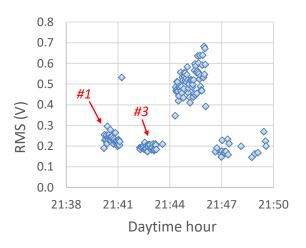
Two example samples (50 ms)



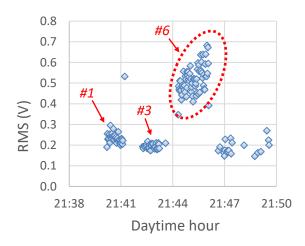

- 1. Basin tap full open
- 2. Basin tap half open
- 3. Next basin tap full open
- 4. Next basin tap half open

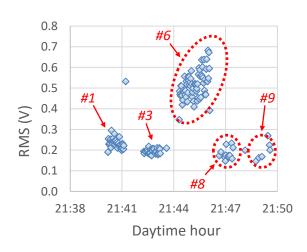


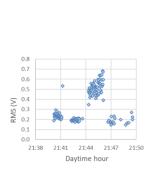
- 1. Basin tap full open
- 2. Basin tap half open
- 3. Next basin tap full open
- 4. Next basin tap half open
- 5. Toilets flush
- 6. Toilets tank filling

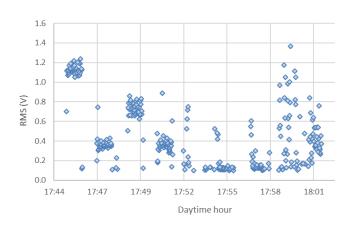


- 1. Basin tap full open
- 2. Basin tap half open
- 3. Next basin tap full open
- 4. Next basin tap half open
- 5. Toilets flush
- 6. Toilets tank filling
- 7. Urinals flush



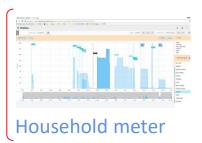

- 1. Basin tap full open
- 3. Next basin tap full open


- 1. Basin tap full open
- 3. Next basin tap full open
- 6. Toilet flush and tank filling

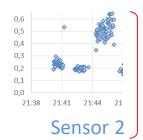


- 1. Basin tap full open
- 3. Next basin tap full open
- 6. Toilet flush and tank filling
- 8. Bidé tap full open
- 9. Shower tap full open

- Single uses can be identifiable enough
 - There are differencies but they can be calibrated in advance



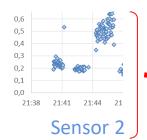
- Single uses can be identifiable enough
 - There are differencies but they can be calibrated in advance
 - Uses in different rooms will be clearly identified



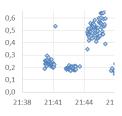
- Single uses can be identifiable enough
 - There are differencies but they can be calibrated in advance
 - Uses in different rooms will be clearly identified

- Single uses can be identifiable enough
 - There are differencies but they can be calibrated in advance
 - Uses in different rooms will be clearly identified

21:41 21:44 21


Sensor 1

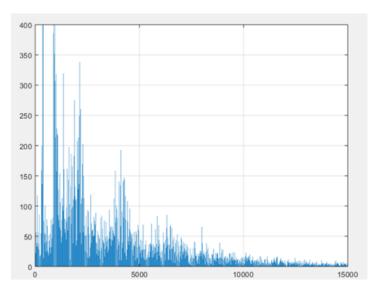
0,6 0,5 0,4 0,3 0,2 0,1

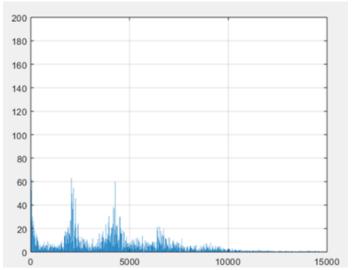


- Single uses can be identifiable enough
 - There are differencies but they can be calibrated in advance
 - Uses in different rooms will be clearly identified

Potential Sensor 3

0,6 0,5 0,4 0,3 0,2 0,1 0,0 21:38 21:41 21:44 21 Sensor 1


- Single uses can be identifiable enough
 - There are differencies but they can be calibrated in advance
 - Uses in different rooms will be clearly identified
 - The sensor is fairly robust against other (normal) environmental noises
- Overlapped uses in the same room are still to be studied
- Potential good supplemental tool for water consumption characterization,
 with no need of interaction with consumers.


FUTURE AIMS (currently in process)

- Optimization of the sampling procedure Sample frequency, number of frames per sample, sample time...
- Link between the noise information and the loggered flow-trace.
- Enlargement of the sensor's capabilities Batery life...

FUTURE AIMS (longer run)

 Wider study of the information already available – Noise spectra, pipe materials, pipes layout...

FUTURE AIMS (longer run)

- Wider study of the information already available Noise spectra, pipe materials, pipes layout...
- Improvements on results analysis Beyond the FFT...

