Proceedings of the Water Efficiency Conference 2013, organised by the Water Efficiency in Buildings Network and Waterwise.

Date: 25-27 March 2013

Venue: Lady Margaret Hall, Oxford, UK

Edited by Kemi Adeyeye

Citation: {Author} (2013), {Title}, Water Efficiency in Buildings Network Proceedings of the Water Efficiency Conference 2013: Innovation through Cooperation, 25-27 March 2013, Oxford, pp. {}.

© Water Efficiency in Buildings Network. March 2013

All rights reserved. No part of this publication may be reproduced, stored in retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the written permission of the copyright holder. Application to use materials should be directed to authors of the relevant paper. Authors of papers in these proceedings are authorised to use their own material freely.

All enquiries to:

Dr Kemi Adeyeye School of Environment and Technology University of Brighton, UK. Web: www.waterefficientbuildings.co.uk

Email: kemi@waterefficientbuildings.co.uk

The Water Efficiency in Buildings Network is funded by the Department of Environment, Food and Rural Affairs, DEFRA, UK.

Scientific Committee

Special thank you to the conference scientific committee:

Kemi Adeyeye, University of Brighton (Chair)

Abdullahi Ahmed, Coventry University

Sarah Bell, University College London

Alison Browne, University of Manchester

David Butler, University of Exeter

Sue Charlesworth, Coventry University

Damien Giurco, Institute of Sustainable Futures, University of Technology, Sydney

Katherine Hyde, University of Reading

Ken Ip, University of Brighton

Lynne Jack, Heriot-Watt University, Edinburgh

James Jenkins, University of Hertfordshire

Dani Jordan, Waterwise

Erwin Nolde, Nolde & Partner, Innovative Wasserkonzepte, Berlin

Martin Pullinger, Lancaster University

Carla Rodrigues, ANQIP, Portugal

Beatrice Smyth, Northern Ireland Water

Rodney Stewart, Griffith School of Engineering, Griffith University, Australia

Vivian Tam, University of Western Sydney, Australia

Eleni Tracada, University of Derby

Sarah Ward, University of Exeter

Graham Winstanley, University of Brighton

Joanne Zygmunt, Waterwise

All papers in the proceedings were double refereed by members of the scientific committee in a process that involved detailed reading of all papers, reporting comments to authors for correction and improvement to the final paper.

EVALUATION OF A SILVER-ION BASED PURIFICATION SYSTEM FOR RAINWATER HARVESTING AT A SMALL-SCALE COMMUNITY LEVEL

I. Adler¹, K. A. Hudson-Edwards² and L. Campos¹

¹Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, UK, ilan.adler.09@ucl.ac.uk; l.campos@ucl.ac.uk ²Dept. of Earth and Planetary Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK, k.hudson-edwards@bbk.ac.uk

ABSTRACT

Silver has been known for centuries to be a powerful disinfectant, with no known harmful effects to humans if applied in adequate doses. Although its use was partially discontinued with the advent of chlorination and modern antibiotics, the discovery of bacterial resistance and disinfection by-products has enabled its re-emergence as a viable water purification option. On the other hand, implementation in small-scale rainwater harvesting systems has received little attention, possibly due to a general perception that it is a complex and/or expensive technology. This can be overcome by efficient designs that dose silver ions into the water at a minimal cost, avoiding the use of sophisticated nanomaterials or chemicals. The authors have evaluated a dozen rainwater harvesting systems equipped with simple silver releasing devices which, combined with conventional filtration, have been providing drinking water to community buildings (schools and clinics) in a rural area of Mexico. This paper represents a follow-up to a previously published study on an initial evaluation performed in the same region. A number of water quality parameters have been tested and compared, examining the long-term efficiency of the projects. Our observations so far show that the silver ion devices act as an effective disinfection mechanism, as long as adequate maintenance is provided. The combination with conventional settling tanks and standard filtration units seems to greatly enhance the overall performance of the system.

Keywords: Disinfection; Drinking water; Rainwater harvesting; Sustainable development; Silver ions

INTRODUCTION

It is a well-established fact that access to drinking water is fast becoming one of the paramount challenges of the new millennium, particularly in developing countries where population growth and environmental pressures are highest. Abundant literature suggests that rainwater harvesting (RWH) can be utilized as a sustainable and practical solution, as long as proper design and water quality issues are taken into consideration (Ward *et al* . 2010). The following report is based on a previous study (Adler *et al* . 2011), where 9 Mexican rural communities located in the San Miguel de Allende Municipality (Fig. 1), equipped with RWH systems for drinking water provision, were monitored for basic water quality parameters and performance indicators. The systems followed the same general design and contained similar components, with minor individual variations according to size and volume requirements, thus allowing for comparison between them. These were installed in each community, at the local primary schools or clinics, between 2007 and 2009. The silver ionizing devices were installed in 2009, towards the end of this period. Detailed site descriptions and system design can be found in the original article.

Fig 1 Map showing relative location of research site (lower inset refers to Mexico as a whole)

In summary, every RWH installation being studied contains the following components:

1. Rooftop and guttering

- 2. First-flush/ settling tank
- 3. Storage Cistern (usually made of hard HDPE plastic or geomembrane)
- 4. Conventional filtration, including stainless steel mesh and activated carbon (GAC)
- 5. Silver ionizing unit, described below, one of the key components of the system.

On this occasion, our study consisted on re-evaluating the systems after more than 2 years from the initial assessment. We used the same field techniques and data processing tools, but with additional parameters based on our previous experience. The results are analysed and compared with the original data set, looking out for improvements or failures in system performance, with the aim of obtaining further insights on both the silver-ion system and the installation as a whole.

MATERIALS AND METHODS

Characteristics of the silver-ion device

The devices consist of a pair of silver electrodes, which are activated by an alternating DC voltage, changing polarity approximately 10 seconds, so as to get an even wear on each electrode. They are placed in line with the filtering system, after a 100 micron stainless steel mesh filter (to remove larger particles) and before the activated carbon filter, which is responsible for removing colour, odour and other major contaminants. Water is thus treated at 'point of use', although some silver ion residual remains for long enough to ensure that the pipelines are not contaminated, as shown in the results.

Field analyses

Basic water quality parameters were obtained on site, such as pH, conductivity and temperature, other analyses such as microbiology were performed at SAPASMA (acronym for the Municipal Water Authority of San Miguel de Allende), in the water quality lab that serves the town's main water treatment plant, usually on the same day when samples were collected.

Samples were collected from September to October 2012 (after the start of the rainy season) as part of a UCL-coordinated research project. A total of 10 sites were analysed (Table 3), with 4 distinct sampling points throughout each system, corresponding to the main stages of the purification process:

Table 1Sampling point description

ID	Point	Sampling notes
1	Settling tank	From plastic sedimentation tanks; corresponding to roof runoff
2	Cistern	In over-ground tanks this was taken from a lower valve (5–10cm above the bottom); in underground cisterns, it was taken from the suction of the pump, located roughly 20–30 cm over the bottom
3	Silver ionizer	From a sampling point located between the silver ionizer and the activated carbon/fine particle filters
4	Drinking tap	From drinking water fountains, usually let to run for at least 1 min before sampling to remove any stagnant water remaining on pipes

Duplicates were taken from selected samples, wherever logistically possible.

An intermediate sampling point (No. 3) was added in this study as compared to the previous investigation. This is omitted in the results below for clarity.

Laboratory tests

Two sets of samples were collected from every site for shipping back to the UK, with the purpose of performing more in-depth analyses. The first was for anions and TOC, which were analysed on a Dionex Ion Chromatograph and a Shimadzu TOC analyser respectively, both of these equipped with an autosampler. The second sample was acidified using ultra-pure nitric acid (2%) for conservation purposes. This one was used to detect major cations as well as silver ion concentrations, performed with an ICP-OES and an ICP-MS, respectively. Both samples were collected in new 30 mL plastic bottles, specifically designed for the analysis of trace metals, filled to the top so as to avoid air bubbles, and stored constantly under refrigeration. Transport was done in cooler boxes using express courier services so as to minimize any variability due to changes in temperature.

pH Orion Aplus portable PH/ISE Meter

Conductivity Portable ECTestr meter: low range (0 - 1900µS)

Coliforms Hach m-ColiBlue24® (Membrane Filtration method)

COD Hach DR2800 Spectrophotometer

Silver ICP-MS

Hardness/ Alkalinity Titration, according to Standard Methods

Dissolved Oxygen/ Temp. Hach sensION 6 DO meter

Cations Jobin Yvon Ultima 2 ICP-OES

Anions Dionex Ion Chromatograph

Silver ICP-MS

TOC Shimadzu TOC-L Analyser

RESULTS AND DISCUSSION

Table 3Rainwater harvesting systems used for study

		Roof area	Consumption	Cistern	Cist. size
ID	Community/sampling site	(m ²)	(m³/year)	Туре	(m ³)
1	Rancho Nuevo Villa Guadalupe	80	10.0	TK	5
2	Boca de la Cañada	140	28.0	OG	17
3	Don Juan	49	8.0	OG	7.5
4	La Aurora	60	8.8	TK	10
5	San Miguel Viejo – Classroom	98	32.0	OG	45
6	San Miguel Viejo – Kitchen	60	16.0	UG	17
7	Augustin Gonzalez – Clinic	140	NA	UG	45
8	Augustin Gonzalez – School	350	48.0	UG	80
9	El Salitre	200	30.0	OG	17

10 Montecillo de Nieto NA NA OG 30

<u>Notes:</u> Systems are all installed in schools in the respective communities, except for (#7) which is in a rural clinic. OG – Overground geomembrane; UG – buried/underground cistern with geomembrane liner; TK – pre-fabricated plastic tanks (5,000 L) with lids); NA – not available.

Table 3 summarizes general data from the communities and systems sampled. Roofs are made of concrete, coated with an asphalt-based paint for waterproofing known by its brand name 'Fester' (manufactured by Henkel in Mexico). The only exception to this was site #1 (Rancho Nuevo), which has an asbestos roof. The overall conditions of each catchment surface were found to be highly variable. In some cases the waterproof coating was intact, in others it looked worn and badly in need of repair. One more site (No. 2), which was unavailable for sampling in 2010, was added to the present study.

Field parameters

Table 4 summarizes results obtained from main parameters analysed throughout the different sites and sampling points.

Conductivity in general terms was found to be low (in the range of 40-70 $\mu S/cm$) in the settling tanks, as is to be expected from rainwater which tends to have low dissolved solid concentration. It increased sharply, however, in most systems at the tap or drinking water point, possibly due to the effect of the silver ionization. COD was found to be moderate in the settling tanks and cisterns (10-40 mg/L) but was practically eliminated after passing through the purification system. Alkalinity values on the other hand tend to remain quite constant throughout the treatment process, but vary greatly within individual systems (10-80 mg/L), possibly due to variations in roof composition. The leaching of calcium carbonate from poorly maintained concrete roofs, could be a potential cause for increase (Morrow $et\ al\ .$ 2010). The same applied to hardness, which was closely correlated to the alkalinity values.

pH was found to be close to neutral, and showed no significant variation throughout the different stages. The lowest value detected was 5.66 in one of the settling tanks, possibly due to the decomposition of leaves and the formation of humic acids (Meera & Ahammed 2006; Yaziz *et al* . 1989). Even in this case, though, the pH at the drinking tap was found to be above 6.2, which is in compliance with Mexican drinking water guidelines (Secretaría de Salud 1994). Water temperatures were all in the range of 20°C.

Flow rates measured at the drinking water tap were an average of 1 L/min, except in San Miguel Viejo (site No. 5) where values were slightly lower since this system is gravity-fed by an elevated tank, instead of a pressure pump like the other sites.

Disinfection

Faecal coliforms, *E. coli* and Total Coliform counts were used as microbiological indicators, due to their ease of detection and their acceptance in most drinking water guidelines worldwide. The authors accept, however, the limitations inherent in this, a discussion which would be beyond the scope of the present paper (Gleeson & Gray 1996). Analysis was done using the Hach Colliblue method, according to standard analytical procedures (Crane *et al.* 2006; APHA 2005).

As expected, according to our previous study (Adler *et al* . 2011), settling tanks tend to have a high coliform count, sometimes over 1,000 CFU/100mL for total counts, and corresponding lower counts for *E. coli* (maximum value detected was 275 CFU/mL). However, after passing through the entire filtration and silver ionizing system, counts are consistently reduced to zero, making the water safe for human consumption. Settling in itself tended to reduce bacterial counts, which is in agreement with other studies performed on settling tanks and first flush systems, but did not account for a total elimination, justifying the need for additional filtration and disinfection.

Table 4Main field parameters (sampling point in parenthesis)

	Settling Tank (1)		Cistern (2)		Drinking Tap (4)	
Parameter	Range	Mean ¹	Range	Mean	Range	Mean
Temp (°C)	14 - 22	19.1 (0.5)	17 - 23	19.5 (0.4)	13 - 30	19.4 (1.1)
рН	5.7 - 7	6.4 (0.1)	4.4 - 8.2	6.9 (0.2)	6.1 - 7.9	6.8 (0.1)
Conductivity				138.2		145
(µS/cm)	20 - 70	43 (5.4)	30 - 420	(40.2)	30 - 430	(48.6)
DO (mg/l)	2.7 - 8.8	5.1 (0.3)	4.4 - 8.1	5.5 (0.2)	3.3 - 8.1	4.8 (0.3)
COD (mg/l)	0 - 43	14.4 (2.8)	0 - 35.5	8.6 (2)	0 - 12.7	2.3 (1.1)
Alkalinity (mg/l)	54 00 7	40.5 (4.0)	10.2 -	00.7 (5.0)	10.2 -	07.0 (4.0)
	5.1 - 30.7	18.5 (1.9)	92.2	32.7 (5.6)	61.4	27.8 (4.6)

Hardness (mg/l)			6.5 -		15.2 -	
	8.7 - 56.3	23.5 (2.9)	112.7	40.4 (7)	99.7	42.3 (5.9)
TOC (ppm)	0.54 -		0.09 -			
	21.18	5.8 (2.04)	5.75	2.9 (0.5)	0.0 - 4.08	1.8 (0.6)

^{1.} SEM: Standard error of the mean cited in parenthesis. Maximum N=22, including repeats collected on different dates. Where a specific sampling point was unavailable, the corresponding N value was reduced.

Silver ions and chemical composition

Silver is not known to be harmful nor toxic to human beings in the amounts dosed here, which are well below the maximum level set by drinking water guidelines (WHO 2008; Secretaría de Salud 2000). Silver has been used for a long period of time in different contexts as a disinfectant (Landau 2007), with considerable bacteriostatic properties but has not, to the authors' knowledge, been properly tested on functional RWH systems such as these.

Values detected on the final drinking water points were all well below the 100ppb limit set by the WHO (WHO 2008), with a maximum reading of 57ppb, and average values around 10ppb. Some silver was also found to 'backflow' into the cisterns, providing extra protection from recontamination in these. Furthermore, in two of the systems electricity had been off for a few days, thus not allowing additional silver to be injected into the system by the ionizing device. In both cases, small amounts of residual silver were still found, which is in agreement with previous experiments pointing to the fact that silver, where there is a relatively low amount of other precipitating ions, can stay active in water for an extended period of time (Landau 2007).

Finally, chemical anions and cations were found to be present in low concentrations throughout, with the highest anions being nitrates and sulphate, possibly due to the atmospheric precipitation of acid compounds (Appelo & Postma 2005). Cations showed correspondingly higher concentrations of sulphur, as expected. Calcium and sodium were also slightly higher than other cations, most likely due to the concrete roofs and the corresponding increase in hardness, as explained above.

Table 5Selected anions analysed on ICP-OES

	Settling Tank		Cis	stern	Drinking Tap	
Parameter	Range	Mean ¹	Range	Mean	Range	Mean
F	0 - 0.97	0.2 (0.1)	0 - 1.92	0.37 (0.16)	0 - 2.34	0.6 (0.3)
			0.29 -		0.5 -	
CI	0.51 - 4.74	1.88 (0.47)	12.51	3.61 (1.22)	13.68	3.6 (1.7)
			0.19 -	10.94		
NO3	0 - 19.81	5.51 (1.94)	27.63	(2.92)	0 - 41.08	10.4 (5.3)
PO4	0 - 2.13	0.74 (0.28)	0 - 9.58	1.42 (0.84)	0 - 0.78	0.2 (0.1)
			1.46 -		4.98 -	
SO4	0.48 - 29.7	8.94 (3.39)	21.89	10.8 (2.14)	23.5	11.8 (2.2)

^{1.} SEM cited in parenthesis. Maximum N=11, including repeats. Where a specific sampling point was unavailable, the corresponding N value was reduced.

Table 6Selected cations analysed on ICP-OES

	Settling Tank		Cistern		Drinking Tap	
Parameter	Range	Mean ¹	Range	Mean	Range	Mean
			2.36 -		2.16 -	
Ca	0.61 - 12.57	5.01 (1.26)	21.43	9.6 (1.59)	23.7	10.5 (1.6)
K	0.13 - 3.89	0.81 (0.35)	0.24 - 9.77	3.74 (1.16)	0.58 - 9.3	3.7 (0.8)
			0.16 -			
Mg	0.05 - 0.23	0.14 (0.02)	11.16	1.75 (0.99)	0.2 - 3.8	1.2 (0.3)
				12.83	0.0 -	
Na	0.0 - 3.0	0.55 (0.34)	0.0 - 53.6	(5.74)	56.32	11 (5.1)
Р	0.0 - 0.3	0.05 (0.03)	0.0 - 0.08	0.03 (0.01)	0.0 - 0.46	0.1 (0)
					0.94 -	
S	0.44 - 2.76	1.11 (0.24)	0.95 - 7.28	3.07 (0.69)	16.9	4.3 (1.1)

^{1.} SEM cited in parenthesis. Maximum N=11, including repeats. Where a specific sampling point was unavailable, the corresponding N value was reduced.

CONCLUSIONS

The experimental results obtained, combined with the previous study in 2010, show that the system along with all its components, including settling tank, filters and silver ionizer, has the potential to provide quality drinking water from harvested rain as long as reasonable and routine maintenance is performed. The isolated performance of the silver ionizer also needs to be accurately determined. Our research group at UCL is currently testing a variety of laboratory-scale models with this purpose in mind, as well as methods for improving the efficiency of the overall system, which are due to be published in the near future. We are also in the process of testing the performance of the device using other microorganisms, which could be more resilient than bacteria, such as viral indicators.

ACKNOWLEDGEMENTS

The authors would like to thank the Water Authority of San Miguel (SAPASMA), the helpful personnel at the municipal wastewater treatment plant, and the local Environment & Ecology Dept. (DMAE), in particular Denia Gonzalez, Ernesto and Misael, for making this study possible. We are also particularly grateful to Rachel Smith for the collection of the samples and onsite testing, as well as the helpful team of Origen San Miguel, mainly Werner, Jesus and Gaby.

REFERENCES

Adler, I., Hudson-Edwards, K.A. & Campos, L.C., 2011. Converting rain into drinking water: quality issues and technological advances. *Water Science & Technology: Water Supply*, 11(6), p.659.

APHA, 2005. Standard Methods for the Examination of Water & Wastewater 21st ed. Andrew D. Eaton et al., eds., American Public Health Association.

Appelo, C.A.J. & Postma, D., 2005. *Geochemistry, groundwater and pollution* 2nd ed., Leiden: Balkema.

Crane, R. et al., 2006. EPA Approves New Test Procedures for the Analysis of Microbiological Pollutants in Wastewater and Sludge, Loveland, CO, USA.

Gleeson, C. & Gray, N., 1996. Coliform Index and Waterborne Disease, London: Spon Press.

Landau, U., 2007. Bactericidal and Oligodynamic Action of Silver and Copper in Hygiene, Medicine and Water Treatment, Finishing Publications Ltd.

Meera, V. & Ahammed, M., 2006. Water quality of rooftop rainwater harvesting systems: A review. *Journal of Water Supply: Research and Technology—AQUA*, 55(4), pp.257–268.

Morrow, A.C., Dunstan, R.H. & Coombes, P.J., 2010. Elemental composition at different points of the rainwater harvesting system. *Science of the Total Environment*, 408(20), pp.4542–4548.

Secretaría de Salud, 2000. Modificacion a la Norma Oficial Mexicana NOM-127-SSA1-1994, Salud ambiental. Agua para uso y consumo humano, Mexico.

Secretaría de Salud, 1994. Norma Oficial Mexicana NOM-127-SSA1-1994 "Salud Ambiental, Agua para uso y consumo humano-limites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilizacion", Mexico.

Ward, S., Memon, F.A. & Butler, D., 2010. Harvested rainwater quality: The importance of appropriate design. *Water Sci. Technol.*, 61(7), pp.1707–1714.

WHO, 2008. Guidelines for Drinking-water Quality 3rd ed., Geneva: World Health Organization.

Yaziz, M.I. *et al.*, 1989. Variations in rainwater quality from roof catchments. *Water Research*, 23(6), pp.761–765.